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Abstract— Parameter estimation in robotics and computer
vision faces formidable challenges from both outlier contam-
ination and nonconvex optimization landscapes. While M-
estimation addresses the problem of outliers through robust
loss functions, it creates severely nonconvex problems that
are difficult to solve globally. Adaptive reweighting schemes
provide one particularly appealing strategy for implementing
M-estimation in practice: these methods solve a sequence of
simpler weighted least squares (WLS) subproblems, enabling
both the use of standard least squares solvers and the recovery
of higher-quality estimates than simple local search. However,
adaptive reweighting still crucially relies upon solving the inner
WLS problems effectively, a task that remains challenging in
many robotics applications due to the intrinsic nonconvexity of
many common parameter spaces (e.g. rotations and poses).

In this paper, we show how one can easily implement
adaptively-reweighted M-estimators with certifiably correct in-
ner WLS solvers using only fast local optimization over smooth
manifolds. Our approach exploits recent work on certifiable
factor graph optimization to provide global optimality certifi-
cates for the inner WLS subproblems while seamlessly inte-
grating into existing factor graph-based software libraries and
workflows. Experimental evaluation on pose-graph optimization
and landmark SLAM tasks demonstrates that our adaptively
reweighted certifiable estimation approach provides higher-
quality estimates than alternative local search-based methods,
while scaling tractably to realistic problem sizes.

I. INTRODUCTION

Current state-of-the-art approaches to parameter estima-
tion in robotics and computer vision typically formalize
and solve this task using maximum likelihood estimation
(MLE) [1], [2]. This approach is appealing for both its
conceptual simplicity, and for the strong statistical perfor-
mance guarantees that MLE affords [3]. However, MLE faces
two critical challenges. First, it is typically implemented
using local optimization methods that are highly sensitive
to initialization when applied to nonconvex problems [4].
Second, basic MLE estimators have zero breakdown point,
meaning that even a vanishingly small fraction of outlier
contamination in the data can produce arbitrarily poor MLE
estimates [5].

M-estimation [5] addresses the outlier problem by replac-
ing the standard negative log-likelihood loss used in basic
MLE with robust alternatives that are designed to attenuate
the ill effects of outlier measurements on the resulting
estimates. While this approach can dramatically improve
robustness to outliers, achieving this effective attenuation
typically requires the use of nonconvex loss functions that
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Fig. 1: Examples of solutions obtained with GNC-Local (left) and the
proposed Certi-GNC framework (right), in the presence of 30 % outlier
loop closures (shown in grey) for a) pose graph optimization (PGO) and b)
landmark simultaneous localization and mapping (SLAM).

substantially exacerbate the nonconvexity (and hence sensi-
tivity to initialization) already present in MLE.

Implementing M-estimation in practice thus frequently
entails a tradeoff between performance guarantees and com-
putational tractability. On one hand, global optimization
methods (such as branch-and-bound or global polynomial
optimization techniques) [6], [7] can guarantee the recovery
of correct (i.e. globally optimal) M-estimates, but are typi-
cally intractably expensive to apply to large-scale problems.
Conversely, local optimization remains computationally ef-
ficient, but determining a suitable high-quality initialization
becomes even more challenging in the presence of potential
outlier contamination [8].

Adaptive reweighting schemes provide one particularly
appealing strategy for implementing M-estimation. These
methods proceed by solving a sequence of weighted least
squares (WLS) problems, which is advantageous because
the latter are frequently easier to optimize than robust
formulations (and in fact often take the form of a standard
MLE for which a fast solver is already available). Adaptive
reweighting thus provides a computationally efficient ap-
proach to implementing M-estimation using standard solvers,
while also typically recovering substantially better estimates
than direct application of simple local search. However, this
strategy crucially relies upon solving the inner WLS, a task
that is itself still challenging in many robotics applications,
due to the inherent nonconvexity of the underlying parameter
spaces (e.g. rotation and pose manifolds) [9]. While some
recent work has demonstrated the use of convex relaxation-
based certifiably correct methods to perform this inner WLS



optimization [10], at present certifiable methods are typically
hand-designed for specific problem classes (e.g. rotation
averaging or PGO), and thus this strategy — while highly
effective — is limited to those specific applications for which
an existing certifiable optimizer is already available [9].

In this paper, we show how one can easily implement
a wide range of adaptively-reweighted M-estimators with
certifiably-correct inner WLS solvers using only fast local
optimization over smooth manifolds. Our approach exploits
the certifiable factor graph optimization framework proposed
in [11], which provides a simple procedure for designing and
deploying a wide range of (non-robust) certifiable estimators
for robot perception problems using the same factor graph
modeling and local optimization paradigm already employed
ubiquitously throughout robotics and computer vision [1].
Our proposed M-estimation approach thus seamlessly in-
tegrates into existing factor graph-based software libraries
and workflows, without requiring the use of external, hand-
designed, problem-specific certifiable solvers [9]. Experi-
mental evaluation on a variety of pose-graph and pose-and-
landmark SLAM tasks demonstrates that our adaptively-
reweighted certifiable estimation approach outperforms al-
ternative M-estimation schemes based upon simple local
search in terms of solution quality, while scaling tractably
to realistic estimation tasks.

II. REVIEW OF ROBUST ESTIMATION

This section reviews fundamentals of robust estimation,
focusing on the use of adaptive reweighting schemes to solve
the M-estimation problem [12].

M-estimation computes a state estimate * according to:

2" = argminy " p(ri()), (1)

where p(-) is a robust loss function that grows sub-
quadratically for large errors. Ensuring hard rejection of very
large residuals requires a loss whose gradient vanishes for
large errors, which is necessarily nonconvex; this additional
nonconvexity makes robust M-estimation harder than its non-
robust counterpart.

One can address this challenge by directly applying global
optimization to solve (1); however, this problem is NP-
hard in general, and thus global methods quickly become
intractable for large-scale SLAM or computer vision prob-
lems [9], [12]. Consequently, practitioners often rely on local
nonlinear methods, which are initialization-sensitive and
prone to poor local minima under outlier contamination [8].

A. Reformulating M-estimation as Outlier Processes

Rather than relying solely on global or purely local opti-
mization to directly solve the robust problem (1), a practical
alternative is to robustify an existing non-robust estimator
by solving a sequence of simpler WLS subproblems via
adaptive reweighting schemes. The Black-Rangarajan (BR)
duality [13] formalizes this strategy by describing an equiva-
lence between solving the M-estimation problem by applying
(i) a robust loss to the measurement residuals and (ii) a

Algorithm 1: GNC for Robust M-estimation.

Input: Initial estimate =(*), initial weights w(®),
surrogate loss family p,,(-)
Output: Final estimate &
1 Initialize: x < 2, w + w(©, p + pug

2 repeat
3 repeat
n
4 x < argmin Z w; 3 (x)
i=1
8 for i € [n] do
‘ w; ¢ arg min P, (w;) +w;r}(z)
7 end wi€[0,1]
8 until CONVERGENCEWLS() (Sec. I1I-D)
9 < UPDATESCHEDULE(u)

10 until CONVERGENCEGNC() (Sec. III-D)
11 return & < x

weighted, non-robust joint formulation over (x,w), where
w are a set of auxiliary weights multiplying the quadratic
residual terms. This equivalence is presented in the following
theorem:

Theorem 1: (Black—Rangarajan Duality [13]) Given a ro-
bust loss p(-), define ¢(z) = p(/2). If ¢(z) satisfies
lim, 0 ¢'(2) = 1, lim, 00 ¢'(2) = 0, and ¢"(z) < 0, then
the M-estimation problem in (1) is equivalent to

min
w@[%,ﬂ" i=1

[wir? (x) + @ (w;)] )

where w; € [0,1] are auxiliary weights, and ®,(w;) is an
outlier process induced by p(-).

The conditions on p(-) are satisfied by most common
robust loss functions [13]. One nice feature of this approach
is that the optimal auxiliary weights can be interpreted as soft
inlier indicators. Note that this probabilistic interpretation is
a byproduct of the BR reformulation and is not available
when minimizing a robust loss alone.

B. IRLS via Alternating Minimization

Directly minimizing jointly over (x, w) in (2) is frequently
difficult. However, two partial minimizations are often much
more straightforward: (i) for fixed w, minimizing over =
reduces to an ordinary WLS problem; and (ii) for fixed
x, the minimization over the weights decouples into n
independent one-dimensional problems on [0, 1], which for
many losses admit closed-form solutions. Note that while
this WLS problem is easier to implement with standard NLS
methods (Gauss—Newton, Levenberg-Marquardt (LM)) than
the original problem, it remains challenging for most robotics
applications. Applying alternating minimization to the BR
formulation (Theorem 1) simply alternates these two steps
and yields the classical iteratively reweighted least squares
(IRLS) algorithm. Because each partial minimization cannot
increase the objective, IRLS produces a monotonically non-
increasing cost sequence. Nevertheless, the nonconvexity of



robust redescending losses renders the convergence of IRLS
highly sensitive to initialization [12].

C. GNC as a Continuation Strategy

Graduated non-convexity (GNC) is a continuation scheme
that aims to reduce sensitivity to initialization by introducing
a homotopy from an “easy” convex surrogate to the “hard”
target robust loss, with each stage solved by WLS. Compared
with IRLS [14], GNC introduces a control parameter j that
defines surrogate losses p,,(-), which are initially convex and
gradually recover the original robust loss as p is varied. This
yields a sequence of WLS subproblems with progressively
increasing robustness (see Fig. 2). The BR duality extends
naturally to p,(-), resulting in the corresponding outlier
processes <I>p# (w;) (see for instance [12] for some common
explicit forms). This leads to the three steps shown in
Algorithm 1.

III. ROBUST CERTIFIABLE FACTOR GRAPH
OPTIMIZATION

In the previous section, we showed that the robust es-
timation problem can be reduced to a sequence of non-
robust problems. However, obtaining global solutions to the
resulting non-robust subproblems remains challenging for
many tasks of interest in robotics and computer vision.

The central question of this work is: within robust adaptive
weighting schemes, how can we solve the inner WLS problem
(see Algorithm 1) so that it is both certifiably correct and
broadly applicable? We address this by solving this inner
problem through Certi-FGO [11], a framework that makes
certifiable estimation accessible in factor graph libraries (e.g.,
GTSAM [15]) by exploiting the structural correspondence
between factor graphs and block-separable quadratically con-
strained quadratic programs (QCQPs).

In the remainder of this section, we introduce Shor’s
convex relaxation of these block-separable QCQPs, yielding
a semidefinite program (SDP) that serves as our certifiable
surrogate, and show how to implement and solve the re-
sulting relaxations efficiently by only using standard local
factor graph optimization (FGO) routines. We therefore pre-
serve the practicality of FGO and equip it with certifiable
guarantees.

A. Shor’s Relaxation of QCQPs

A growing body of recent work has shown that hard
nonconvex MLE problems can be solved by expressing them
as a QCQP, relaxing them to SDP, and then applying Burer-
Monteiro (BM) factorization [16] to handle large problem
instances efficiently [9], [17].

Let us assume that we have an estimation problem in the
form of a QCQP:

min  (Q,XX ") s.t.(A;, XXT) =10, Vi [m)],

face =  min |
€)]

where Q € S™, A; € S™ for all i € [m], and b € R™.
To address NP-hardness of (3), Shor’s relaxation [18]
replaces XX T with a generic positive semidefinite (PSD)

1 )Variable Update, certified
global solve with Certi-FGO.

fix
weights:

argmin Y| wft)rf (x)
w®) z

2 )Weight Update,
closed form solve with p,,.
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z®
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Fig. 2: Overview of our Certi—-GNC framework: Certi-FGO [11] pro-
vides 1) certifiable global inner solves (i.e. non-linear weighted least squares
(WLS) problem) within a graduated non-convexity (GNC) framework. The
control parameter p defines convex surrogates p,(r;) of the target non-
convex robust loss, yielding a sequence of WLS problems with 2) weights
w; € [0, 1] updated via. closed form solve from residuals ;. 3) A truncated
least squares (TLS) robust loss function is used here: p is increased to
gradually recover non-convexity, with ;1 — oo recovering hard truncation.

matrix Z € S7, removing the implicit rank-d constraint to
yield the convex SDP relaxation:

fépp = min (Q,Z) s.t.(A;,Z)=0b;, Vic[m]. @)
ZeSy
Note that (4) is convex, and can thus be solved to global
optimality using e.g. interior-point methods. Furthermore, its
optimal value always lower bounds the optimal value of (3):
Jspp < focge- Finally, note that if a minimizer Z* of (4)
happens to have a rank-d factorization of the form Z* =
X*X*T, then X* is in fact a global minimizer of (3).
Remark 1: Crucially, a large body of recent work has
shown that this exact solution recovery often occurs when

the measurement noise is small [9], [19].

B. Efficiently Solving the SDP Relaxation via Low-Rank
Factorization and Riemannian Staircase

Rather than solving (4) directly, we can exploit its low-
rank structure to reduce computational complexity for large-
scale problems. We assume a factorization of the form Z =
YY' for some Y € R"¥? and d < p < n, yielding the
lifted rank-p BM factorization [16]:

min (Q,YY'") st

(A, YY) =b,;, Vi€ [m],
Y eRnxp

4)
which automatically enforces positive semidefiniteness and
reduces the decision space from roughly n? to np variables
(where p < n), at the cost of reintroducing nonconvexity.
Note that setting p = d recovers the original QCQP (3).
Moreover, a candidate Z = Y'Y for a solution of (4)
construted from a local minimizer Y of (5) can still be
checked for global optimality using (4)’s Karush-Kuhn-
Tucker (KKT) conditions.



Remark 2: This low-rank factorization approach is justi-
fied by the fact that (4) is known to admit low-rank solutions
for many problems of interest under mild conditions [9], [19].

Through comparison of the KKT conditions of the BM
and SDP problems, one can show that a BM solution can
be certified as globally optimal by checking the positive
semidefiniteness of the certificate matrix [20]:

SL£Q+A"(N)=Q+) MA,, (6)
i=1

where A* : R™ — S™ denotes the adjoint operator. For a
KKT point Y of the rank-p BM factorization with multipliers
A, the matrix S in (6) serves as a certificate of optimality:
if S > 0, then Z = YY' is globally optimal for the
SDP (and, when p = d, also solves the QCQP); otherwise,
the eigenvector associated with the smallest eigenvalue of
S gives a direction of negative curvature. The Riemannian
Staircase [21], [22] wraps this certify-or-lift step by solving
a sequence of low-rank problems: parameterize Z = YY |
at rank p, solve the rank-p manifold subproblem, recover
multipliers to form S, and either certify or increase the rank
to p+1 by augmenting Y along the minimum-eigenvector
direction. In practice, one or two staircase steps typically
suffice [17].

C. Certifiable Estimation for Factor Graphs

We begin by considering the following general MLE
problem: jointly minimizing a sum of data fitting terms with
sparse dependencies over a collection of variables,

mnélj\ri ; lk(zs,), @)
where M; is the domain of a; and each summand /;, depends
only upon the subset of variables g, indexed by Sj; C [n].

This sparse dependency structure of (7) admits a natural
graphical representation using factor graphs [1]. Formally
the factor graph associated with (7) is the bipartite graph
G = (V,F,&) in which:

1) variable nodes V = {zi,..

parameters to be estimated;

2) factor nodes F = {li,...,l,} consist of the individual

factors [;

3) edge set £ & {(x;,lx) € V x Flz; € xg, }, ie.

variable x; and factor /) are joined by an edge in G if
and only if x; is an argument of .

., &} are the model

See Fig. 3 for a representative example.

Factor graphs serve two primary functions. First, the
edge set £ in G directly encodes the sparsity structure
of Prob. (7). Second, factor graph models provide a con-
venient modular modeling language for constructing high
dimensional optimization problems by composing simple
elementary constituent parts (i.e. individual variables and
factors). Consequently, many current state-of-the-art software
libraries for state estimation in robotics and computer vision
employ factor graph-based abstractions for instantiating and
solving MLE problems of the form (7) [15], [23].

Now let us additionally suppose that the generic maximum
likelihood estimation (7) takes the form of the QCQP (3).
Observe that the sparsity pattern captured in (7) places alge-
braic restrictions on the QCQP data matrices: Sy, captures the
block sparsity pattern of the k-th objective matrix Qj, while
the Cartesian product structure of the full domain implies
constraint matrices A; are block-diagonal with one nonzero
block, i.e., they are block separable. Certi-FGO [11]
exploits this correspondence between sparse factor graphs
and QCQPs with block-structure by lifting each variable
to a higher-dimensional domain corresponding to the BM-
factored relaxation. Crucially, this lifting preserves the spar-
sity structure of (7). Assuming that the lifted variable do-
mains are smooth manifolds, the resulting lifted factor graph
can thus be optimized on the product manifold using Rieman-
nian optimization [24], where the Riemannian Staircase [17],
[22] (Algorithm 2) automatically manages rank increases and
solution verification. Thus, Cert i-FGO provides certifiable
global optimality and competitive scalability without requir-
ing problem-specific implementations.

Remark 3: The use of this method presupposes that the
estimation problem (7) is a QCQP. This is the case for many
robotics and computer vision estimation problems [9] [7].

In the following, we show how factor graph struc-
ture is preserved through the problem transformations
(QCQP—SDP—BM) described in Secs. III-A and III-B.
Likewise, the verification and saddle-escape procedures III-
B can be efficiently performed block wise by exploiting the
same factor graph structure.

1) QCQP and Shor’s relaxation over Factor Graphs: We
begin by explicitly writing the factor graph MLE problem (7)
as a QCQP (3), revealing the block separable structure of the
objective and constraints induced by the factor graph formu-
lation. The decision variable X € R™*? can be partitioned
into K block-row variables X; € R%*¢ corresponding
to individual factor graph variables x; in (7), such that
X=[X; X, Xx] " with n =35, d,.

The decomposition (7) places strong restrictions on the
data matrices parameterizing the corresponding QCQP. First,
recall that each factor I (-) only depends upon the subset of
variables indexed by Sj. This fact constrains the sparsity
patterns of the data matrices Q; € S™ parameterizing the
quadratic summands [ (-) in (7): note that we must have
(Qk)i,; = 0if (4,5) ¢ Sk x Sk. Second, the feasible set of
(7) is a Cartesian product of the individual variable domains
M = My x -+ x Mg, i.e., each variable can be varied
independently of all others. In order to be consistent with
this product structure, it follows that each of the quadratic
constraints appearing in (3) can involve only one of the
variables X;. Consequently, we may partition the index set
[m] of the constraints into subsets, where L; C [m] contains
the indices of those constraints associated with variable X;.
This implies that if £ € L;, then Ay is block diagonal, with
a single nonzero block in the (4,4)-th position. Thus, the
factor graph decomposition (7) implies the following block
decomposition for the corresponding QCQP:



min
XeRnxd

u K
> (Qu)igs XiX])

k=1 i,j=1 ®)
s.t. (Ap)ii, X XY = by, V0 € Ly, i € [K],

2) Burer-Monteiro Factorization over Factor Graphs:
For scalability, we apply the low-rank BM factorization
Z = YY' to the SDP obtained with Shor’s relaxation,
partitioning Y € R™*? into K variable blocks Y; € R%*P
to arrive at

u K
min Z Z((Qk)z},jaYiY]—‘r»

YeRm I i1 9
st ((Ap)ii, YY) =bg, V€ Lyi € [K].

Note that the sparsity and block-separability structure of the
BM factorization (9) exactly matches the one assumed in the
factor graph decomposition (7) for the initial QCQP (8).

Rather than use traditional non-linear programming
solvers to solve the constrained nonconvex problem (9),
we leverage intrinsic optimization—reformulating it as un-
constrained optimization on manifolds—for substantial ef-
ficiency gains. The constraint set of Prob. (9) inherits
the same block-diagonal and block-separability properties as
that of the original QCQP (8). It follows that the feasible
set for our desired intrinsic reformulation must also be a
Cartesian product, and that the individual factors comprising
this product are determined by:

M ={Y,; € REP: (Ag)is, YY) = by}, (10)
Ve e L;,i € [K],
with the overall feasible set M® := M) x ... x MP),
The lifted objective (9) inherits the same sparse dependency
structure from the original data matrices Qy, (8), ensuring the
reformulated problem maintains a factor graph representation
with variables and factors in one-to-one correspondence with
the original MLE (7). This leads to the intrinsic formulation:
min (Q,YY"). (11)
Yem®

Since the constraints are absorbed into the manifold geom-
etry Y € M), this becomes unconstrained optimization
over a product of smooth manifolds', enabling standard Rie-

mannian methods from factor graph optimization libraries.
3) Optimality Verification and Saddle-Escape in the Fac-
tor Graph Setting: The Lagrange multipliers used in the
optimality certificate of (6) can be obtained by solving a
least-squares problem. Because each constraint matrix A, is
block-diagonal with a single nonzero block (Ay); ; acting on
variable Y; for all £ € L;, the operator A*() is also block-
diagonal with blocks aligned to the factor graph variables.
Consequently, the linear system characterizing Lagrange
multipliers for the BM factorization (5) actually decomposes
into K independent linear systems involving the K blocks on

IThis is possible only when the constraints acting on individual variables
are smooth manifolds, which is a mild assumption in practice as rotations
and poses induce smooth manifold structure, specifically the Stiefel manifold
[24].

Constrained Extrinsic : Unconstrained Intrinsic
Optimization | Optimization
p |
: 8EE0 oEEeEn
+ | EEE0 oEEen
(8 | aee o ) D00EE
3 | oo g8800
| [m] 00800
|
ALYY ) =0 ) ) ~
[ (A, > b, =) : > @ M (p)
8 (A, YY) = b; : M(fpid
= S - | () manifo
g N gtz).,, Q:YJ . | M describing
z N I N | . feasible set
o) . . | 5
) I (P)
: ' -
: i .
[ (Ax YY) = b, ) submanifolds

check
optimality
certificate
S>=0

solve Burer-Monteiro
SDP relaxation

ﬁctor graph

Fig. 3: Illustration of the Certi-FGO framework showing the transforma-
tion from constrained to unconstrained optimization leveraging underlying
sparse factor graph structure. The BM variable Y is partitioned into
K block rows Y; corresponding to variables a; in the factor graph.
The preserved block structure is apparent in this BM form of the factor
graph MLE (9), in that each constraint block (A/); ; acts locally on a
single block Y;, defining individual submanifolds MEP ). Sparse separable
structure is also present in the objective, though not explicitly visualized.
The constrained optimization problem (Eq. (9), left) is reformulated as
unconstrained Riemannian optimization over the product manifold M (P) =
Mgp ) % x M%’) (Eq. (11), right), enabling efficient solution using
standard manifold optimization techniques.
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the diagonal of A*(\). It follows that we can solve for the
Lagrange multipliers ); (and hence the nonzero blocks of the
certificate matrix S) by performing independent operations
on the individual manifolds ME” ). This blockwise structure
enables efficient optimality verification and the construction
of negative-curvature directions for saddle escape that di-
rectly reflect the sparsity of the underlying factor graph.

Such efficient optimality verification and saddle escape are
carried out using the Riemannian Staircase algorithm [17],
[22] adapted to the factor graph setting, described in Algo-
rithm 2. At each rank p, local Riemannian optimization of the
BM problem is performed over the product manifold M (®),
the certificate matrix S is computed from the blockwise
multipliers, and global optimality is either certified or the
rank is increased along a negative-curvature direction to
continue the search.

In practice, this block-separable formulation makes the
Riemannian optimization problem almost automatic: the
product manifold M®) can be assembled directly from the
individual submanifolds M'") defined in (10), and the GNC
scheme already implemented in GTSAM can be applied to
the lifted factors without the need for problem-specific code.
See [11] for details on constructing these lifted factors. As
a result, practitioners can construct an efficient, certifiably
robust solver that efficiently exploits problem structure sim-
ply by lifting their original factor graph, rather than hand-
deriving problem-specific data matrices or manifold models.



Algorithm 2: Cert i-FGO, Certifiable Estimation in
Factor Graphs [11]
Input: Initial values Y = {Y,;}?" ,, factor graph G,
initial rank p.
Output: A feasible estimate X and lower bound
fépp on its optimal value.
1 function CERTIFIABLEFGO(Y, G, p):
2 while frue do
/I Lift variables to rank-p

3 Y, < LIFT(Y)

/I Construct lifted factors for rank-p lift
4 Gp <~ CONSTRUCTLIFTEDFACTORS(G, p)
5 (Y))  LOCALOPTIMIZATION(G,, Y},)

/I Construct certificate and verify by
computing minimum eigenvalue

6 (Amin; Umin) = VERIFICATION(G,,Y )
7 if A\nin > 0 then
8 | return {Y, fp}
9 else
// Increase rank, use current solution as
initialization in next iterate.
10 p+—p+1
11 Y, + SADDLEESCAPE(Y;, Umnin)
12 end
13 end

14 | X < ROUNDSOLUTION(Y,)
15 return {X, fS*DP}
16 end

D. Robustifying Certifiable FGO

In Sec. II-A, we showed that the BR duality reformulates
M-estimation as iterative variable and weight updates (Al-
gorithm 1). The variable update (??) is a WLS problem—a
type of QCQP—which Certi-FGO can solve (see Remark
3). Therefore, Cert i-FGO naturally fits as the inner solver
for adaptive reweighting schemes.

We emphasize how easy it is to implement Certi-FGO
in practice within existing factor graph-based adaptive
reweighting robust estimation frameworks. Unlike purpose-
built methods like SE-Sync—which require hand-crafting the
objective and constraint matrices for Problem (5), manually
specifying the manifold structure, and implementing cus-
tom solver subroutines (ex. gradient and Hessian computa-
tions)—Cert 1 —FGO operates directly on factors. This seam-
less integration with GTSAM’s mature solver library and
GNC implementation, provides certifiable robust estimation
for factor graphs without manual problem reformulation and
minimal implementation efforts. In this paper we present one
realization of this pipeline which we refer to as Cert i-GNC,
consisting of Algorithm 1 with the inner WLS variable
update solved with Algorithm 2.

At each rank-p lift of Certi-FGO Algorithm 2, op-
timization on the lifted manifold M®) as per (11) is
performed using GTSAM’s native Riemannian LM solver,

which handles the manifold geometry through tangent space
computations and retractions without requiring any custom
implementation. In our experiments, GNC-Local—our non-
certifiable GNC baseline—uses this same LM solver for its
inner solves, ensuring observed performance differences stem
from our use of certifiable inner WLS solves, rather than
from details of the underlying factor graph optimizers.

In practice, the inner loop of Algorithm 1 (lines 3-8) is
truncated to a single iteration. When homotopy parameter
updates are sufficiently small, the minimizer for the next
step lies close to the current solution x*, allowing this
warm-started single iteration to adequately approximate the
solution. For GNC—-Local, this means performing one lo-
cal solve per p value. For Certi—-GNC, each inner solve
achieves global optimality, inherently eliminating any need
for iterative refinement.

Algorithm Termination. To ensure fair comparison,
Certi-GNC and GNC-Local share the same GNC outer
loop termination criteria. The loop terminates when any
of the following occur between iterations: (i) weights w;
converge, i.e. maxlgign‘ w; — round(wi)’ < g, (ii) cost
converges, i.e. A(Q, YY) < ¢ = 1075, (iii) the max
number of GNC iterations reached. With small p steps, a
single warm-started WLS per stage often suffices and the
inner loop may be omitted. Similarly, the exit criterion for
the inner loop WLS solves are (Certi-FGO or LM solve
of GNC-Local ): (i) cost converges, i.e. A(Q, YY) <
Ctor = 1072 | (ii) Pmaz = 30, maximum iterations exceeded,
(iii) S + nI = 0, i.e. solution certification achieved. Note
that criterion (iii) only applies to the Riemannian Staircase
of Certi~FGO in Algorithm 2.

Remark 4: Certi-FGO performance depends on param-
eters 17 and P,,q4., Which can be tuned to balance certificate
accuracy and runtime. While smaller n values give stricter
certificates, in practice using larger 7 values for approximate
certificates can, in some instances, still achieve near-optimal
solutions. While the maximum rank p,,., affects solver
speed, certificates are usually obtained at lower ranks than
the specified maximum.

IV. FGO APPLICATIONS AND EXPERIMENTS

We benchmark Certi-GNC, our iterative framework
with globally optimal subproblem solves that requires no
good initialization (see Fig. 2), against a purely local one
GNC-Local under two initializations: random sampling on
the feasible set (rand init) and a favorable (outlier-free)
odometry-based initialization (odom init). We evaluate two
representative factor graph problems: PGO and landmark-
based SLAM. To the best of our knowledge, these exper-
iments report the first robust certifiable solver to appear in
the literature for landmark-based SLAM (although [26], [27]
present fast non-robust certifiable methods).

A. Experimental Setup

Problem Definition: The standard PGO problem esti-
mates poses {(Ri,t;)}ic(x), with R; € SO(d) and t; €
R?, from noisy relative measurements {(R.;, t:;)}; j)ee by
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Fig. 4: Performance of our Certi-GNC framework with random initialization compared with the non-certifiable baseline GNC-Local given a good
initialization from odometry and a random one. Columns (left to right): RMSE-ATE (translation), RMSE-ATE (rotation), and solution time. Rows (top to

bottom): a) PGO problems from Intel dataset and b) landmark SLAM from Trees dataset [25].

minimizing 32, e fi R — RiRaj |3 + 735165 — ti —
R;t;; ||§, where k;; and 7;; are the measurement preci-
sions. Landmark-based SLAM extends PGO by estimating
landmark positions {l;}e[z; from noisy pose-landmark
measurements {Lix}(; pyes,.» With Iz € R% and adds the
residuals 3 e Tinl[ls — ti — R;L;||2, where 7y, is the
measurement precision.

Metrics: We report runtime (in seconds) and estimation
accuracy, the latter measured by the root-mean-square abso-
lute trajectory error (RMSE-ATE) [28].

Implementation Details: For outlier generation, we cor-
rupt only loop-closure (PGO) or pose—landmark (landmark
SLAM) edges at rates (10%, 20%, 30%), mimicking data
association failures; odometry measurements are left unper-
turbed and thus remain inliers. Each problem is evaluated
over 10 Monte Carlo trials with independently generated
outlier realizations. Certi—GNC and GNC-Local use the
same GNC parameters as introduced in the previous section.
The GTSAM LM solver is used as the local solver for both
Certi-GNC and GNC-Local relative_error 1078,
absolute_error 1078, and max_iteration 100. All
experiments use the certifiable FGO implementation of [11]
within the GNC scheme from GTSAM [10], [15], and were
run on a laptop equipped with an Intel Core i7-11800H CPU
and 32 GB RAM under Ubuntu 22.04. Full dataset details
appear in our code release'; for TREES (landmark SLAM),
we evaluate a reduced variant, extracting the first 1600 poses
and the corresponding landmark observations for those poses.

B. Accuracy and Runtime Results

We assess whether Cert1i—GNC provides practical ben-
efits over local methods for state estimation problems of
varying complexity in the presence of outliers. The results
in Fig. 4 reveal two key findings.

In terms of translation and rotation error, and for the
easier estimation problem of PGO, GNC-Local with good
odometry initialization and Certi-GNC provide similar

results, though GNC-Local exhibits higher variability, in-
dicating less reliable performance. For the more challenging
landmark SLAM problem, Certi-GNC consistently out-
performs GNC-Local across all conditions, showing that
global optimization guarantees become essential as problem
complexity increases due to higher dimensionality and more
opportunities for local methods to fail.

While Certi-GNC exhibits longer convergence times
than local alternatives, this is expected given the additional
computational complexity of solving the underlying global
optimization problem and the certification framework’s com-
putational overhead [29] (see Remark 4). This is justified by
the improved solution reliability.

C. Tightness Properties Under Outlier Contamination

Under bounded noise, certifiable estimators relying on
SDP relaxations are generically tight, yielding exact, low-
rank solutions (see Remarks 1, 2). These properties en-
able the use of BM factorization to achieve computational
tractability. However, in robust estimation the presence of
outliers violates this bounded-noise assumption. Thus, we
cannot generically expect FGO problems with outliers to ex-
hibit the low-rank structure and exactness that Certi-FGO
is designed to exploit. On the other hand, if the iterative
reweighting procedure used in GNC succeeds in effectively
separating inliers from outliers, we should hope that the
reweighted inner least-squares estimation problems produced
at the end of the homotopy will recover these tightness
properties.

For a set of representative Monte Carlo PGO samples
subject to varying outlier contamination, the termination
level and relative suboptimality gap JCQC“};’% of the
Cert i-FGO solution, embedded within each GNC iteration,
are plotted in Fig. 5. Across all iterates the termination
level (Fig. 5, top) remains relatively small and converges
to a low value, demonstrating that the requisite low-rank
structure is indeed present and that Cert i —~FGO successfully
exploits this. Since the termination level directly corresponds
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Fig. 5: A single Monte Carlo trial on the Intel PGO dataset with outlier
rates of 0%, 10%, 20%, and 30%, showing (top) the Riemannian-staircase
termination rank (a proxy for computational effort) and (bottom) the
stagewise optimality gap of the Cert i—-FGO solve at each GNC iteration.
In the 0% outlier case, GNC weights converge in the first iteration and the
optimality gap is 10712 as per Remark 1, the terminal level is visualized
with a dashed line. All trials start at level 2 with random initialization; the
trials with outlier terminated at GNC iteration 13.

to computational effort, the maximum level of p = 15
indicates that BM factorization provides scalability even
when used as an inner solver in outlier-contaminated settings.
(For comparison, in this example there are K = 1728 block
variables consisting of 2d poses, so the corresponding matrix
decision variable Z is of order n = K x3 = 5184.) Similarly,
the relative suboptimality gap approaching 0 (Fig. 5, bot-
tom) indicates that our non-convex SDP relaxations become
asymptotically tight at the termination of GNC (i.e., after
finding suitable assignments to the weights w;), confirming
the recovery of the low-rank structure and exactness that our
method is designed to exploit.

V. CONCLUSION

In this paper, we show how to implement robustified
certifiable estimators using only fast local optimization over
smooth manifolds, thus enabling practitioners to easily de-
sign and deploy these state-of-the-art methods using standard
factor graph-based software libraries and workflows. We em-
bed the recently proposed non-robust certifiable factor graph
estimation framework in [11] as the inner solver within an
robust adaptive reweighting scheme, GNC, providing stage-
wise global optimality certificates for the inner subproblems.

In terms of estimation accuracy, our framework exceeds
the performance of M-estimation strategies based on local
search. While our method is more expensive to run than local
baselines, this is expected because we are performing global
rather than local optimization for the inner WLS solves.
This trade-off is worthwhile for the improved reliability our
approach affords. Finally, by requiring no problem-specific
relaxations and leveraging standard facto graph software (e.g.
GTSAM), our approach facilitates broad deployment across
diverse estimation tasks, thereby democratizing access to the
powerful machinery of robust certifiable estimation.
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